1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

ЭЛЕКТРИКА и ЭЛЕКТРОНИКА

Чем отличается электротехника от электроники

Говоря об электротехнике, мы чаще всего подразумеваем генерацию, преобразование, передачу или использование электрической энергии. При этом имеем ввиду традиционные устройства, применяемые для решения названных задач. Данный раздел техники связан не только с эксплуатацией, но и с разработкой, и с совершенствованием оборудования, с оптимизацией его частей, схем, а также электронных компонентов.

По большому счету электротехника — это целая наука, изучающая, и в конце концов открывающая возможности для практического внедрения электромагнитных явлений в разнообразные процессы.

Более чем сто лет назад электротехника выделилась из физики в довольно обширную самостоятельную науку, а на сегодняшний день уже сама электротехника может быть условно разделена на пять частей:

теоретическая электротехника (ТОЭ).

При этом справедливости ради стоит заметить, что электроэнергетика сама давно является отдельной наукой.

В отличие от слаботочной (не силовой) электроники, для компонентов которой характерны малые габариты, электротехника охватывает сравнительно крупные объекты, такие как: электроприводы, ЛЭП, электростанции, трансформаторные подстанции и т. д.

Электроника же оперирует интегральными микросхемами и прочими радиоэлектронными компонентами, где более значительное внимание уделяется не электроэнергии как таковой, а информации и непосредственно алгоритмам взаимодействия тех или иных устройств, схем, потребителей, — с электроэнергией, с сигналами, с электрическими и магнитными полями. Компьютеры в данном контексте тоже относятся к электронике.

Важной вехой для становления современной электротехники явилось широкое внедрение в начале 20 века трехфазных электродвигателей и многофазных систем передачи электроэнергии на переменном токе.

Сегодня, когда минуло более двухсот лет со дня создания вольтова столба, мы знаем многие законы электромагнетизма, и используем не только постоянный и низкочастотный переменный ток, но и переменный высокочастотный, и пульсирующий токи, благодаря чему открыты и реализуются широчайшие возможности для передачи не только электроэнергии, но и информации на значительные расстояния без проводов даже в космических масштабах.

Теперь электротехника с электроникой неизбежно плотно переплетаются практически всюду, хотя и принято считать, что электротехника и электроника вещи совершенно разного масштаба.

Сама по себе электроника, как отдельная наука, изучает взаимодействие заряженных частиц, в частности электронов, с электромагнитными полями. Например ток в проводе — это движение электронов под действием электрического поля. В электротехнике редко углубляются в такие детали.

А между тем именно электроника позволяет создавать точные электронные преобразователи электроэнергии, устройства передачи, приема, хранения и обработки информации, аппаратуру различного назначения для многих современных отраслей.

Именно благодаря электронике изначально зародились модуляция и демодуляция в радиотехнике, и вообще если бы не электроника, то не было бы ни радио, ни телерадиовещания, ни интернета. Элементная база электроники зарождалась на электронных лампах, и здесь вряд ли бы хватило одной электротехники.

Полупроводниковая (твердотельная) микроэлектроника, зародившаяся во второй половине 20 века, стала точкой резкого прорыва в становлении компьютерных систем, основанных на микросхемах, наконец появление в начале 70-х микропроцессора положило старт развитию компьютеров по закону Мура, гласящему, что количество транзисторов, размещаемых на кристалле интегральной схемы, удваивается каждые 24 месяца.

Сегодня именно благодаря твердотельной электронике существует и развивается сотовая связь, создаются различные беспроводные устройства, GPS-навигаторы, планшеты и т. д. И сама полупроводниковая микроэлектроника теперь полностью включает в себя: радиоэлектронику, бытовую электронику, электронику энергетики, оптоэлектронику, цифровую электронику, аудио-видеотехнику, физику магнетизма и т.д.

Между тем в начале 21 века эволюционная миниатюризация полупроводниковой электроники приостановилась и практически остановлена сейчас. Это случилось из-за достижения минимально возможных размеров транзисторов и иных радиоэлектронных компонентов на кристалле, при которых они еще способны отводить джоулево тепло.

Но хотя размеры достигли единиц нанометров, а миниатюризация уперлась в предел разогрева, в принципе еще возможно, что следующим этапом в эволюции электроники станет оптоэлектроника, в которой несущим элементом выступит фотон, значительно более подвижный, менее инерционный чем электроны и «дырки» полупроводников нынешней электроники.

Читать еще:  Как сделать компрессор своими руками

Изучите электронику с помощью этих 10 простых шагов

Вы хотите изучать электронику, чтобы иметь возможность создавать свои собственные устройства?

Существует масса ресурсов для изучения электроники. Но с чего начать?

И что тебе из этой массы информации действительно нужно?

И в каком порядке?

Как итог, если вы не знаете, что вам нужно изучить, вы можете легко потратить много времени на изучение ненужных вещей.

И если вы пропустите некоторые простые, но важных первые шаги, вы будете долго бороться даже с базовыми цепями.

Если ваша цель состоит в том, чтобы создавать собственные проекты с помощью электроники, тогда этот контрольный список шагов для вас!

Начните с чтения всех шагов до конца, чтобы получить общее представление.

Затем решите, какой учебный материал вы будете использовать для решения каждого шага.

ШАГ 1: Изучите понятие «замкнутый контур»

Если вы не знаете, что нужно для работы схемы, как вы можете создавать схемы?

Первое, что нужно изучить, это понятие «замкнутый контур».

Электрический ток — это поток электронов в проводе. Электроны текут, когда у вас есть «замкнутый контур» — путь от отрицательного к положительному полюсу батареи.

Например, если вы подключите небольшую лампочку к положительному и отрицательному полюсу батареи, вы получите замкнутый контур, по которому могут течь электроны и заставлять лампу светить.

После завершения этого шага вы должны знать, как сделать какую-нибудь простую схему. И вы должны быть в состоянии исправить одну из самых распространенных ошибок в цепи — отсутствующее соединение.

Шаг 2: Получите базовые знания о напряжении, токе и сопротивлении

Ток течет, сопротивление сопротивляется, напряжение напрягает:)))))) Что то в таком роде происходит, подумаете вы. Но не совсем.

Все они влияют друг на друга.

Это важно знать, чтобы правильно изучать электронику.

Поймите, как они работают в цепи, и этот выполните данный шаг.

В помощь вам, я написал отличную статью:

После завершения этого шага вы сможете посмотреть на очень простую схему и понять, как в ней течет ток и как напряжение распределяется между электронными компонентами.

Шаг 3: Изучите электронику, построив схемы из принципиальных схем

Больше не нужно ждать — вы должны начать разрабатывать схемы уже сейчас. Не только потому, что это весело, но и потому, что это то, что вы хотите научиться делать хорошо.

Если вы хотите научиться плавать, вы должны практиковаться в плавании. То же самое с электроникой. Не бойтесь ошибаться!

После завершения этого шага вы должны знать, как работают принципиальные схемы и как использовать макетную плату для построения из них реальных цепей.

Отличная статья вам в помощь:

Шаг 4: Получите базовое понимание этих компонентов

Наиболее распространенные компоненты, которые вы увидите в начале изучения электроники:

Вы можете получить базовое понимание каждого из них быстро, если у вас есть хорошие учебные материалы.

После выполнения этого шага вы должны знать, как эти компоненты работают и что они делают в цепи.

Вы должны быть в состоянии взглянуть на простую принципиальную схему и подумать:

«Ага, эта схема делает это!».

Шаг 5: Получите опыт использования транзистора в качестве переключателя

Транзистор является наиболее важным компонентом в электронике.

На предыдущем шаге N4 получили представление о том, как работает транзистор. Теперь пришло время использовать его на практике.

Постройте несколько различных цепей, где транзистор действует как переключатель.

После выполнения этого шага вы должны знать, как управлять моторами, зуммерами или лампами с помощью транзистора.

Шаг 6: Научитесь паять

Прототипы, построенные на макете, легко и быстро создаются. Но они не выглядят хорошо, и связи могут легко выпадать/разъединяться.

Если вы хотите создавать проекты, которые хорошо выглядят и работают долго, вам нужно научиться паять.

Пайка это весело, и этому действительно легко научиться!

После выполнения этого шага вы должны знать, как сделать хорошее паяное соединение.

На своем сайте я написал подробную статью, которая поможет пройти вам данный шаг:

Шаг 7: Узнайте, как диоды и конденсаторы ведут себя в цепи

На этом этапе у вас должна быть уже хорошая база в голове, и вы должны уже уметь создавать простые схемы.

Но ваши знания по электронике не должны стоять на месте.

Теперь пришло время узнать, как работают более сложные схемы.

После выполнения этого шага — если вы видите принципиальную схему с резистором, конденсатором и диодом, подключенным каким-либо образом — вы сможете увидеть, что произойдет с напряжениями и токами при подключении аккумулятора. И в тоге вы должны понять, что делает схема.

Статьи по теме, которые я написал на канале Дзена:

Читать еще:  Маринованные шампиньоны

Шаг 8: Построение схем с использованием интегральных схем

До сих пор вы использовали отдельные компоненты для создания забавных и простых схем. Но вы все еще ограничены самыми основными функциями.

Как вы можете добавить в свои проекты классные функции, такие как звук, память, интеллект и многое другое?

В таком случае вам нужно научиться использовать интегральные схемы (ИС).

Эти схемы могут выглядеть очень сложными, но это не так сложно, как может показаться на первый взгляд. Всего-лишь нужно научиться работать с ними. И это откроет вам новый мир возможностей.

Шаг 9: Создай свою собственную печатную плату

К этому шагу вы должны были построить уже немало цепей.

И вы можете оказаться немного ограниченными, потому что некоторые схемы, которые вы хотите сделать требуют большого количества соединений.

Поэтому, сейчас самое время научиться создавать свои собственные печатные платы!

Вы можете начать с простой программы, такой как Fritzing. Если этого недостаточно для ваших нужд, изучите более совершенное программное обеспечение для проектирования печатных плат, такое как Eagle или KiCad.

После выполнения этого шага вы должны знать, как проектировать печатную плату на компьютере и как заказать дешевые прототипы печатной платы вашего дизайна онлайн через интернет.

Почитайте мою статью по теме:

Шаг 10: Научитесь использовать микроконтроллеры в своих проектах

Благодаря встроенным микросхемам и собственному проекту печатной платы вы можете многое сделать.

Но, тем не менее, если вы действительно хотите свободно создавать то, что хотите, вам нужно научиться использовать микроконтроллеры . Это действительно выведет ваши проекты на новый уровень.

Научитесь использовать микроконтроллер, и вы сможете создавать расширенные функциональные возможности с помощью нескольких строк кода вместо использования огромного набора компонентов для той же цели.

Одни из популярных микроконтроллеров сейчас — это AVR, ARM. К примеру в популярной линейке устройств Arduino применяются микроконтроллеры Atmel AVR.

Вот несколько моих проектов на Ардуино с которыми вы можете ознакомиться:

Электроника, электротехника

Электричество шаг за шагом

Правила устройства электроустановок. Все действующие разделы и главы шестого и седьмого изданий

Электроника. Сборник рецептов. Готовые решения на базе Arduino и Raspberry Pi

Саймон Монк, 2019

Маркировка электронных компонентов. Определитель

Юрий Ревич, 2018

Сборник задач по электротехнике и электронике

Умные вещи. Arduino, датчики и сети для связи устройств (м)

От Arduino до Omega. Платформы для мейкеров шаг за шагом

Валерий Яценков, 2018

Энциклопедия электронных компонентов. Том 1

Электроника для начинающих

Схемотехника аналоговых и аналогово-цифровых устройств

Георгий Волович, 2018

1000 и одна микроконтроллерная схема. Выпуск 4

Сергей Рюмик, 2017

Устройства импульсного питания для альтернативных энергоисточников

Андрей Кашкаров, 2016

Современные обогреватели. Типы, расчет мощности, ремонт

Андрей Кашкаров, 2011

Цифровая электроника для начинающих

Павел Кириченко, 2019

Альберт Кузнецов, 2014

Основы электроники для чайников

Кэтлин Шамие, 2018

Электроника. Теория и практика

Саймон Монк, 2018

Raspberry Pi. Сборник рецептов. Решение программных и аппаратных задач

Саймон Монк, 2019

Электроника. Логические микросхемы, усилители и датчики для начинающих

Юрий Сибикин, 2018

Энциклопедия электронных компонентов. Том 2

Ч. Платт, Фредерик Янссон, 2017

Правила технической эксплуатации электроустановок потребителей

Управление и настройка Wi-Fi в своем доме

Андрей Кашкаров, 2015

Теоретические основы электротехники (м)

Ю. Буртаев, П. Овсянников, 2017

Алексей Марченко, 2012

Джеймс А. Рег, Гленн Дж. Сартори, 2011

Проектирование трансформаторов и дросселей

Вильям Маклиман, 2015

Технология производства электронных средств

Владимир Ланин, Александр Хмыль, 2019

Биометрическая защита. Обзор технологии

Анти Суомалайнен, 2019

Сделай сам! Робот на Arduino

Гордон МакКомб, 2018

Электронные схемы и системы

Оуэн Бишоп, 2016

Олег Яковлев, Владимир Якубов, Валерий Урядов, Александр Павельев, 2019

Газовая электроника и физика плазмы в задачах

Борис Швилкин, 2019

Газовая электроника и физика плазмы в задачах (м)

Борис Швилкин, 2019

Цифровые интегральные схемы. Методология проектирования

Боривож Николич, Жан Рабаи, Ананта Чандракасан, 2016

Цифровые системы. Теория и практика (+ CD)

Рональд Точчи, Нил Уидмер, 2018

Декомпозиционный подход к задачам электродинамики

Вячеслав Никольский, Татьяна Никольская, 2019

Вариационные методы для внутренних задач электродинамики

Вячеслав Никольский, 2019

Энциклопедия электронных компонентов. Том 3

Ч. Платт, Фредерик Янссон, 2017

Основы электротехники и электроники (м)

Сергей Демидов, Олег Баксанский, 2018

Мейкерство. Arduino и Raspberry Pi. Управление движением, светом и звуком

Саймон Монк, 2017

Интернет вещей с ESP8266

Марко Шварц, 2019

Развитие телекоммуникаций. На пути к информационному обществу. Развитие радиотехники и знаний о распространении радиоволн в XX столетии

Марк Быховский, 2018

Развитие телекоммуникаций. На пути к информационному обществу. История развития электроники в XX столетии

Марк Быховский, 2018

Читать еще:  Устранение запотевания бачка унитаза

Развитие телекоммуникаций. На пути к информационному обществу. Развитие радиотехники и знаний о распространении радиоволн в XX столетии

Марк Быховский, 2018

Развитие телекоммуникаций. На пути к информационному обществу. История развития электроники в XX столетии

Марк Быховский, 2018

Производство инновационных электрических машин

Михаил Сибикин, Юрий Сибикин, 2018

Основы эксплуатации электрооборудования электростанций и подстанций

Юрий Сибикин, 2017

Arduino для изобретателей. Обучение электронике на 10 проектах

Дерек Ранберг, Брайан Хуанг, 2018

ЖКИ, светоизлучающие и лазерные диоды. Схемы и готовые решения

Франк Зихла, 2012

Курс электротехники и радиотехники

А. Молчанов, П. Занадворов, 2011

Инструкция по применению и испытанию средств защиты, используемых в электроустановках

Правила пожарной безопасности для энергетических предприятий

Пособие по безопасному проведению работ с электрифицированным инструментом

Схемы АПВ в электрических сетях: использование емкостного отбора напряжения

Векторные диаграммы в схемах релейной защиты и автоматики

Релейная защита в распределительных электрических сетях

Александр Булычев , Александр Наволочный, 2017

Электроустановки. Сборник нормативных документов

Типовая инструкция по учету электроэнергии при ее производстве, передаче и распределении

Типовая инструкция по техническому обслуживанию и ремонту воздушных линий электропередачи напряжением 0,38-20 кВ с неизолированными проводами

Правила технической эксплуатации электрических станций и сетей Российской Федерации

Основное оборудование электрических сетей. Справочник

Методические указания по допуску в эксплуатацию новых и реконструированных электрических и тепловых энергоустановок

Основы расчета электрических сетей

Юрий Сибикин, 2018

Правила устройства электроустановок в вопросах и ответах. Глава 1.8. Нормы приемо-сдаточных испытаний

Валентин Красник, 2012

Микроволновое излучение ядерного взрыва

В. Федоров, Ю. Котов, К. Мозгов, Т. Семенова, 2019

Электрика и электроника. В чём отличия?

Приветствую Вас на моем блоге!

На связи Екимов Игорь.

Сегодня рассмотрим не письмо, а телефонный звонок, который поступил на мой мобильный. Подписчик, оказывается окончил мой институт (Минский радиотехнический институт) и со временем ему надоело работать на «дядю» Он интересовался, насколько сложно ему стать частным электриком. У нас разговор затянулся на полчаса. Весь разговор я передавать не буду. Но передам некоторые моменты, так как многие мои подписчики имеют подобное образование.

Так чем же отличается электрика и электроника.

1. Схемотехника электрики намного проще. Разобраться в розетках, выключателях для электроника вообще проблем не представляет.

2. В электрике чаще применяется расчёт сечения проводников. В электронике в основном цепи слаботочные. Расчётом сечений занимаются в силовой электронике.

3. В электрике используется опасное для жизни напряжение 220 и 380 вольт. Основная электроника находится под низким напряжением от 5 до 24 вольт. Под высоким напряжением выходные цепи, блоки питания, а в телевизоре питание кинескопа и строчной развёртки.

4. В электрике большие требования к аккуратности монтажа. Все розетки, выключатели, светильники должны установлены по уровню, никаких зазоров между розеткой и стеной не допускается. В электронике большие требования к качеству пайки. К расположению элементов на плате особых требований не предъявляется.

5. В электрике применяется большое количество видов соединений. В электронике это, в основном, пайка и клеймники.

6. Следует отметить масштаб самой выполненной схемы. В электронике — это небольшая коробочка, а в электрике — это проводка всего дома.

7. Применяемые инструменты. Кроме тех инструментов, что применяются в электронике, с электрике ещё применяется перфоратор, болгарка, шуруповёрт, индикаторная отвёртка и другие специфичные инструменты.

8. Работа на вызовах. Если телевизор на ремонт к Вам могут принести. То, для того, чтоб делать проводку, надо выезжать на объект.

9. Работа электрика требует больше физических усилий.

10. Работа электрика зачастую пыльная.

Так возникает вопрос: « Почему я бросил электронику?». Вот ответы:

1. Я, допустим, отремонтировал развёртку в телевизоре, а потом сгорел блок питания. Очень сложно клиенту доказать, что ты не при чём. В электрике, если всё нормально сделал, таких проблем не возникает.

2. Зачастую, приходилось копаться в старье, и что за ремонт возьмешь? Стоимость ремонта может быть больше стоимости ремонтируемого устройства. Электрика оценивается по строительным расценкам. Без разницы, старая проводка или новая.

3. Иногда, в телевизоре выйдет из строя такая деталь, что её месяцами приходится ждать. По электрике, все примбабасы есть на рынке.

4. Средний уровень дохода в электрике у меня получается выше.

5. Схемотехника в электрике проста.

Вот, вроде, всё описал. Может немного сыровато. Кстати, если в рассылке есть телемастера, которые занимались установкой дистанционных управлений, то может сталкивались с блоком МСН-701EI. Это была моя разработка от разработки схемы до трассировки платы. Сам я их собирал. Ещё до сих пор висит мой сайт, относящийся к этому е-майлу. Дизайн никакой, но в своё время свою функцию выполнял.

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector